skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sobczyk, Marek"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary Nuclear speckles are membraneless organelles implicated in multiple RNA processing steps. In this work, we systematically characterize the sequence logic determining RNA localization to nuclear speckles. We find extensive similarities between the speckle localization code and the RNA splicing code, even for transcripts that do not undergo splicing. Specifically, speckle localization is enhanced by the presence of unspliced exon-like or intron-like sequence features. We demonstrate that interactions required for early splicesomal complex assembly contribute to speckle localization. We also show that speckle localization of isolated endogenous exons is reduced by disease-associated single nucleotide variants. Finally, we find that speckle localization strongly correlates with splicing kinetics of splicing-competent constructs and is tightly linked to the decision between exon inclusion and skipping. Together, these results suggest a model in which RNA speckle localization is associated with the formation of the early spliceosomal complex and enhances the efficiency of splicing reactions. HighlightsSequences containing hallmarks of pre-mRNA dictate speckle localizationRNA speckle localization is coupled to early spliceosome assemblyDisease-associated single nucleotide variants reduce localization of isolated exonsRNA speckle localization strongly correlates with splicing kineticsGraphical Abstract 
    more » « less
    Free, publicly-accessible full text available May 28, 2026